A log–exp elliptic equation in the plane
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper we show the existence of a nonnegative solution for singular problem with logarithmic and exponential nonlinearity, namely <inline-formula><tex-math id="M1">\begin{document}$ -\Delta u = \log(u)\chi_{\{u&gt;0\}} + \lambda f(u) $\end{document}</tex-math></inline-formula> in id="M2">\begin{document}$ \Omega id="M3">\begin{document}$ 0 on id="M4">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula>, where id="M5">\begin{document}$ is smooth bounded domain id="M6">\begin{document}$ \mathbb{R}^{2} $\end{document}</tex-math></inline-formula>. We replace function id="M7">\begin{document}$ \log(u) by id="M8">\begin{document}$ g_\epsilon(u) which pointwisely converges to -<inline-formula><tex-math id="M9">\begin{document}$ as id="M10">\begin{document}$ \epsilon \rightarrow When parameter id="M11">\begin{document}$ \lambda&gt;0 small enough, corresponding energy functional perturbed equation id="M12">\begin{document}$ has critical point id="M13">\begin{document}$ u_\epsilon id="M14">\begin{document}$ H_0^1(\Omega) nontrivial original id="M15">\begin{document}$ $\end{document}</tex-math></inline-formula>.</p>
منابع مشابه
On a superlinear elliptic equation
In this note we establish multiple solutions for a semilinear elliptic equation with superlinear nonlinearility without assuming any symmetry.
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملElliptic solutions to a generalized BBM equation
An approach is proposed to obtain some exact explicit solutions in terms of the Weierstrass’ elliptic function ℘ to a generalized Benjamin-Bona-Mahony (BBM) equation. Conditions for periodic and solitary wave like solutions can be expressed compactly in terms of the invariants of ℘. The approach unifies recently established ad-hoc methods to a certain extent. Evaluation of a balancing principle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2022
ISSN: ['1553-5231', '1078-0947']
DOI: https://doi.org/10.3934/dcds.2021125